
Under Construction:
Component Editors
by Bob Swart

Delphi offers a Tools API,
which allows programmers

to extend the functionality of the
Delphi IDE itself. There are four
different Tools API interfaces: for
Experts (see Issues 3 and 7),
Version Control Systems (more on
those in a later column), Property
Editors (see Issue 6) and finally
Component Editors. They offer us
the functionality we need to add
new or enhance existing IDE
features.

Component editors exist to allow
the developer to edit or amend
certain aspects of the behaviour of
components used in his or her
application. Like property editors,
they are basically derived from a
single base class, where some
abstract methods need to be over-
ridden and re- defined in order to
give the component editor the de-
sired behaviour. Unlike property
editors, however, component edi-
tors are component-specific, and
not property-specific. They are
bound to a particular component
type, and are generally executed by
a click with the right mouse button
on the component when it’s been
dropped on a form. The mouse
click generally activates a pop-up
menu: the context menu. This
activation method is different to
property editors, but otherwise
the process of writing a component
editor is essentially the same.

A default component editor is
created for each component that is
selected in the form designer
based on the component’s type
(see also GetComponentEditor and
RegisterComponentEditor in the file
DSGNINTF.PAS). When the compo-
nent is double-clicked the Edit
method is called. When the context
menu for the component is invoked
the GetVerbCount and GetVerb meth-
ods are called to build the context
menu. If one of the verbs is selected
the ExecuteVerb method is called.

Paste is called whenever the com-
ponent is pasted to the clipboard.
You only need to create your own
component editor if you wish to
add verbs to the context menu,
change the default double-click
behaviour, or add an additional
clipboard format.

The class definition for the base
class TComponentEditor can be
found in DSGNINTF.PAS and is
shown in Listing 1 (for both Delphi
1.0 and Delphi 2.0).

There are six virtual methods
which can be overridden by the
component editor developer,
which leads to a somewhat easier
editor building process compared
to property editors.

➤ Create
Create(AComponent, ADesigner) is
called to create the component edi-
tor. AComponent is the component to
be edited by the editor. ADesigner
is an interface to the designer to
find controls and create methods
(this is not used often).

➤ Edit
Called when the user double-clicks
the component. The component
editor can bring up a dialog in
response to this method, for exam-
ple, or some kind of design expert.
If GetVerbCount is greater than zero,

Edit will execute the first verb in
the list (ExecuteVerb(0)).

➤ ExecuteVerb(Index)
The verb at location Index was
selected by the user from the
context menu. The meaning of this
is determined by component
editor.

➤ GetVerb
The component editor should
return a string that will be
displayed in the context menu. It
is the responsibility of the
component editor to place the &
(accelerator key) character and
the ‘...’ characters as required in
each case.

➤ GetVerbCount
The number of valid indices to
GetVerb and ExecuteVerb, assumed
to be zero based (that is,
0..GetVerbCount-1).

➤ Copy
Called when the component is
being copied to the clipboard. The
component’s filed image is already
on the clipboard. This gives the
component editor a chance to
paste a different type of format
which is ignored by the designer
but might be recognised by
another application.

Type
 TComponentEditor = class
 private
 FComponent: TComponent;
 FDesigner: TFormDesigner;
 public
 constructor Create(
 AComponent: TComponent; ADesigner: TFormDesigner); virtual;
 procedure Edit; virtual;
 procedure ExecuteVerb(Index: Integer); virtual;
 function GetVerb(Index: Integer): string; virtual;
 function GetVerbCount: Integer; virtual;
 procedure Copy; virtual;
 property Component: TComponent read FComponent;
 property Designer: TFormDesigner read FDesigner;
 end;

➤ Listing 1

30 The Delphi Magazine Issue 8

Default Component Editor
Apart from the general type
TComponentEditor, there is also a
default component editor which is
used by most components unless
another component editor is
installed to override it. The
TDefaultEditor implements Edit to
search the properties of the
component and to generate the (or
navigate to an already existing)
OnCreate, OnChange or OnClick
event, whichever it finds first, or
just the first alphabetic event
handler which is available – see
Listing 2.

Whenever the component editor
modifies the component it must
call the Designer.Modified method
to inform the designer that the
component on the form has been
modified. If we only use the compo-
nent editor to display some infor-
mation (like a general About Box,
for example) there is no need to
inform the designer.

Custom Component Editors
When building custom compo-
nents, there are generally a few
possible base classes that can be
considered. Every class from the
VCL is derived from the TObject
root. The class TObject contains
the Create and Destroy methods
that are needed to create and

destroy instances of classes. The
class TPersistent, derived from
TObject, contains methods for
reading and writing properties to
and from a form file. TComponent is
the class to derive all components
from, as it contains the methods
and properties that allow Delphi to
use TComponent classes as design
elements, view their properties
with the Object Inspector and
place these components in the
Component Palette. See Figure 1
for the class hierarchy.
If we want to create a new non-
visual component from scratch,
then TComponent is the class we
need to derive from. Visual compo-
nent classes are derived from the
TControl class, which already
contains the basic functionality for
visual design components, such as
position, visibility, font and
caption. Derived from TControl are
TGraphicControl and TWinControl.
The key difference between a
TGraphicControl and a TWinControl
is that a TWinControl contains an
actual Windows handle, while a
TGraphicControl does not. There-
fore, derived from a TWinControl we
will find classes such as the stand-
ard Windows controls, whilst
controls like TBevel, TImage,
TSpeedButton and TShape are
derived from TGraphicControl.
Finally, the class TCustomControl is
much like both TWinControl and
TGraphicControl together.

Why do we need to rehash this
information, which we’ve already
covered in previous columns?
Well, basically, because we need to
understand when the default com-
ponent editor is useful in order to
be able to determine when to write
a custom component editor of our

own. It would seem that since the
default component editor is capa-
ble of generating event handler
skeleton code for the OnCreate,
OnChange or OnClick event, we
should at first look for components
that don’t have or need these
events. Like, for example, a compo-
nent that does not have a Windows
handle (ie does not need the input
focus at any given time), and
certainly non-visual components
derived from TComponent.

Another class of components
where a custom component editor
would be handy are the dialog
components, such as TOpenDialog,
TSaveDialog, ColorDialog, Print-
Dialog and PrinterSetupDialog. The
FontDialog, FindDialog and
ReplaceDialog do already have
some events, so these don’t apply
(the default component editor will
put you in the code editor to write
one of their event handlers). The
five interesting dialogs have no
events and hence no default behav-
iour for the default component
editor.

What could a component editor
mean to these dialogs? Well, a
preview of what they’d look like at
run time would be nice. Have you
never had the need to know if
you’ve set all the required proper-
ties for TOpenDialog? The only way
you can check is by running you
application. Wouldn’t it be much
simpler to just double-click on the
dialog to get it to preview itself in
its current state? Yes, I think so too
and that’s what we’ll be doing in
the rest of this article.

For this, we only need to
override the edit method of the
TComponentEditor class, see what
kind of class our component actu-
ally is (using run-time type informa-
tion, or RTTI) and then Execute it,
as shown in Listing 3.

Note that the inherited Edit is
needed to make sure the default
component editor behaviour is still
triggered when we are not one of
the five classes derived from
TCommonDialog. Since we’re install-
ing this component editor for all
derived classes of TCommonDialog
we need to ensure that all other
classes (except the five we want)
still get their default behaviour.

TObject
 TPersistent
 TComponent
 TControl
 TGraphicControl
 TWinControl
 TCustomControl

➤ Figure 1

Type
 TDefaultEditor = class(TComponentEditor)
 private
 FFirst: TPropertyEditor;
 FBest: TPropertyEditor;
 FContinue: Boolean;
 procedure CheckEdit(
 PropertyEditor: TPropertyEditor);
 protected
 procedure EditProperty(PropertyEditor: TPropertyEditor;
 var Continue, FreeEditor: Boolean); virtual; public
 procedure Edit; override;
 end;

➤ Listing 2

April 1996 The Delphi Magazine 31

A component editor must be
registered, just like components or
property editors. However, it’s
much simpler compared to
registering property editors, since
we only need two parameters to
function RegisterComponentEditor.
The first one is the name (type) of
the component for which this
component editor is intended
(TDialog in our case) and the
second parameter is the type of
the component editor itself
(TDialogEditor in our case).

Installing a component editor is
again much like installing a compo-
nent or property editor: just add it
to COMPLIB.DCL. Adding this com-
ponent editor to the COMPLIB.DCL
where the corresponding compo-
nent TXXXDialog is already installed
leads to the Execute method being
executed at design-time.

A component editor can be
created for a single class, or for a
set of classes (all derived classes
are included). In our case, the com-
ponent editor is valid and meant
for a specific set of derived classes
from TCommonDialog, see Listing 4.

After we’ve installed this
TCommonDialogComponentEditor in
COMPLIB.DCL we can drop a
TOpenDialog on a form and double-
click on it. An instant preview will
appear with all the properties
exactly as they’ve been defined in
the Object Inspector at run-time
(Figure 2). So, has Delphi suddenly
become an interpreter, or what?

Unfortunately, if we try to test
our component editor on the
TFontDialog, for example, the de-
fault behaviour (editing the OnApply
event) does not happen. We do call
the inherited Edit method, but it’s
the TComponentEditor.Edit method
that we’re calling, not the Edit
method from the default compo-
nent editor (TDefaultEditor). There
are two ways to fix this. We could
either make sure we install the
TDialogEditor only for the five
specific classes derived from
TCommonDialog that we need, or we
could derive our TDialogEditor
from the TDefaultEditor class in-
stead of the TComponentEditor class.
Both solutions will work. We will
implement both of them later in
this article.

procedure TCommonDialogComponentEditor.Edit;
begin
 if (Component IS TOpenDialog) then { also TSaveDialog }
 (Component AS TOpenDialog).Execute
 else if (Component IS TPrintDialog) then
 (Component AS TPrintDialog).Execute
 else if (Component IS TPrinterSetupDialog) then
 (Component AS TPrinterSetupDialog).Execute
 else if (Component IS TColorDialog) then
 (Component AS TColorDialog).Execute
 else
 { default behaviour }
 inherited Edit
end {Edit};

➤ Listing 3

unit CompEdit;
{ TCommonDialogComponentEditor version 0.1 }
interface

uses DsgnIntf;
Type
 TCommonDialogComponentEditor = class(TComponentEditor)
 public
 procedure Edit; override;
 end;
 procedure Register;

implementation
uses Dialogs;

procedure TCommonDialogComponentEditor.Edit;
begin
 if (Component IS TOpenDialog) then { also TSaveDialog }
 (Component AS TOpenDialog).Execute
 else if (Component IS TPrintDialog) then
 (Component AS TPrintDialog).Execute
 else if (Component IS TPrinterSetupDialog) then
 (Component AS TPrinterSetupDialog).Execute
 else if (Component IS TColorDialog) then
 (Component AS TColorDialog).Execute
 else
 inherited Edit { default behaviour }
end {Edit};

procedure Register;
begin
 { register TCommonDialogComponentEditor for
 TCommonDialog and all its derived classes }
 RegisterComponentEditor(TCommonDialog, TDialogEditor)
end;
end.

➤ Listing 4

➤ Figure 2

32 The Delphi Magazine Issue 8

Menu Component Editors
Component editors can do much
more than we’ve looked at so far. In
fact, we can create our own pop-up
menus with several different
options and actions to choose
from. Let’s try to do the same

function TCommonDialogComponentEditor.GetVerbCount: Integer;
begin
 GetVerbCount := 2
end {GetVerbCount};

➤ Listing 6

function TCommonDialogComponentEditor.GetVerb(Index: Integer): string;
begin
 if Index >= 1 then GetVerb := ’&About...’
 else GetVerb := ’&Execute...’
end {GetVerb};

➤ Listing 7

TCommonDialogComponentEditor = class(TComponentEditor)
public
 function GetVerbCount: Integer; override;
 function GetVerb(Index: Integer): string; override;
 procedure ExecuteVerb(Index: Integer); override;
end;

➤ Listing 5

procedure TCommonDialogComponentEditor.ExecuteVerb(Index: Integer);
begin
 if index >= 1 then
 MessageDlg(’TCommonDialogComponentEditor (c) 1996 by Dr.Bob’,
 mtInformation, [mbOk], 0)
 else if (Component IS TOpenDialog) then { also TSaveDialog }
 (Component AS TOpenDialog).Execute
 else if (Component IS TPrintDialog) then
 (Component AS TPrintDialog).Execute
 else if (Component IS TPrinterSetupDialog) then
 (Component AS TPrinterSetupDialog).Execute
 else if (Component IS TColorDialog) then
 (Component AS TColorDialog).Execute;
end {ExecuteVerb};

➤ Listing 8

➤ Figure 3

“Execute/Preview” task for the
common dialogs, but this time add
an information message as a
second choice.

To avoid breaking the default be-
haviour of the classes derived from
TCommonDialog we will only register

our TCommonDialogComponentEditor
version 0.2 for the five classes that
have no event properties.

We need to override two func-
tions and one procedure this time:
function GetVerbCount, function
GetVerb and procedure ExecuteVerb
(see Listing 5).

Since we only want two menu
options, one for the Dialog.Execute
action and one for the “About” mes-
sage, the function GetVerbCount
should return a value of 2 (see
Listing 6).

Now, remember that Delphi usu-
ally counts from 0 up, including in
this case. So, the next function,
GetVerb, takes an index parameter
which can receive the values 0 or 1
for the two possible values of the
menu entries. For 0 we should re-
turn Execute, while for 1 (or any
other value) we should return
About, as in Listing 7.

In order to show which common
dialog we want to execute, we
could change GetVerb for index 0 to
the following:

GetVerb := ’&Execute ’ +
 Component.ClassName + ’...’

Finally, we can execute the verbs.
For index 0 we do exactly the same
thing we previously did in the
TDialogEditor, namely, call the
Execute method of the correct
class, and for index 1 or higher we
just show an ‘About’ MessageDlg.
See Listing 8.

Notice that we can use the
Component property to get to the
actual component for which we are
an editor. Also notice that we need
to use the run-time type informa-
tion of our associated component
to get to its actual contents.

If we try this code, we get a nice
pop-up component editor menu, as
shown in Figure 3. If we execute the
TColorDialog and select another
colour, white for example, and
close the dialog, we will notice that
the Color property of the
TColorDialog in the Object Inspec-
tor still has the old value. Why
didn’t it get updated to the new one
we selected? Is this process
one-way-only, or what? Actually, it
seems that we needed to call the
Designer.Modified method to

April 1996 The Delphi Magazine 33

inform the designer (and hence the
Object Inspector) that the compo-
nent has changed, ie that one or
more of its properties has just got
a new value. If we include this line
(as last line of the ExecuteVerb
method), then everything works
fine as expected.

The complete source code for
the new menu component editor
TCommonDialogComponentEditor can
be seen in Listing 9.

Menu Default
Component Editors
Now that we’ve seen how we can
write a new menu component edi-
tor for the TCommonDialog compo-
nents that do not have a default
behaviour, why not extend it to
cover the ones that already do
have a default behaviour, but
without losing this new behaviour,
ie offer a pop-up menu with as a
first (default) choice the OnEvent
handling code editor, as a second
choice the dialog preview and as a
third choice the About dialog.

For this we need another class
TCommonDialogDefaultEditor which
is derived from TDefaultEditor.
Again, we need to override two
functions and one procedure: func-
tion GetVerbCount, function GetVerb
and procedure ExecuteVerb, see
Listing 10.

We now want three instead of
two menu options: one for the de-
fault action (TDefaultEditor.Edit),
one for the preview (calling
Dialog.Execute) and a third for the
About box, hence GetVerbCount
should return a value of 3. The new
GetVerb is shown in Listing 11.

Finally, we execute the verbs, as
is shown in Listing 12.

I think you’ll get the idea by now,
but just to be sure, the complete
source code is on the disk of
course. If we install and active this
new TCommonDialogDefaultEditor,
on a TFindDialog for example, then
we get the context menu shown in
Figure 4.

If we select the first option (or
double-click on the component,
which will by default execute the
first menu verb), then we automat-
ically jump to the code editor in the
OnEvent handler code (the OnFind in
this case). The second menu

unit CompMenu;
{ TCommonDialogComponentEditor version 0.5 }
interface
uses DsgnIntf;
Type
 TCommonDialogComponentEditor = class(TComponentEditor)
 function GetVerbCount: Integer; override;
 function GetVerb(index: Integer): String; override;
 procedure Executeverb(index: Integer); override;
 end;
 procedure Register;

implementation
uses Dialogs;

function TCommonDialogComponentEditor.GetVerbCount: Integer;
begin
 GetVerbCount := 2
end {GetVerbCount};

function TCommonDialogComponentEditor.GetVerb(index : Integer): String;
begin
 if Index >= 1 then
 GetVerb := ’&About...’
 else
 GetVerb := ’&Execute...’
end {GetVerb};

procedure TCommonDialogComponentEditor.ExecuteVerb(index: Integer);
begin
 if index >= 1 then
 MessageDlg(’TCommonDialogComponentEditor (c) 1996 by Dr.Bob’,
 mtInformation, [mbOk], 0)
 else if (Component IS TOpenDialog) then { also TSaveDialog }
 (Component AS TOpenDialog).Execute
 else if (Component IS TPrintDialog) then
 (Component AS TPrintDialog).Execute
 else if (Component IS TPrinterSetupDialog) then
 (Component AS TPrinterSetupDialog).Execute
 else if (Component IS TColorDialog) then
 (Component AS TColorDialog).Execute;
 Designer.Modified { inform the Object Inspector of the change }
end {Edit};

procedure Register;
begin
 RegisterComponentEditor(TCommonDialog, TCommonDialogComponentEditor)
end;
end.

➤ Listing 9

TCommonDialogDefaultEditor = class(TDefaultEditor) { not TComponentEditor }
public
 function GetVerbCount: Integer; override;
 function GetVerb(Index: Integer): string; override;
 procedure ExecuteVerb(Index: Integer); override;
end;

➤ Listing 10

function TCommonDialogComponentEditor.GetVerb(Index: Integer): string;
begin
 case Index of
 0: GetVerb := ’&OnEvent handler code’;
 1: GetVerb := ’&Execute ’ + Component.ClassName + ’...’;
 else
 GetVerb := ’&About...’
 end {case}
end {GetVerb};

➤ Listing 11

option will give the preview and the
third will show the about message.
Just as we’ve expected and quite
handy, if I may say so myself [Yes,
I’m feeling in a generous mood, so
you may! Editor].

Next Time
We’ve seen how to write our own
component editors to extend the
Delphi IDE itself. In fact, it almost
looks like we’ve made Delphi a
two-way interpreter!

34 The Delphi Magazine Issue 8

➤ Figure 4Next Time, we’ll explore the
secrets of Delphi’s own Pandora’s
Box: COMPLIB.DCL. In particular,
we’ll look at how we can register
components automatically, how
we can make sure we’ll be able to
re-build COMPLIB.DCL (even if
we’ve corrupted it by accident),
how to optimise COMPLIB.DCL and
how we can share it amongst
multiple developers.

Part one of Delphi Development
for Workgroups starts next month;
part two will be about Version
Control Systems and the long
awaited ViCiouS. You’d better be
sure to be there...

Bob Swart (you can email him at
100434.2072@compuserve.com) is
a professional 16- and 32-bit soft-
ware developer using Borland
Delphi and sometimes a bit of
Pascal or C++. In his spare time, he
likes to watch video tapes of Star
Trek Voyager with his two year old
son Erik Mark Pascal.

procedure TCommonDialogComponentEditor.ExecuteVerb(Index: Integer);
begin
 if index >= 2 then
 MessageDlg(’TCommonDialogDefaultEditor (c) 1996 by Dr.Bob’,
 mtInformation, [mbOk], 0)
 else if index = 1 then begin
 if (Component IS TFindDialog) then { also TReplaceDialog }
 (Component AS TFindDialog).Execute
 else if (Component IS TFontDialog) then
 (Component AS TFontDialog).Execute;
 Designer.Modified
 end else
 inherited Edit { TDefaultEditor.Edit for index = 0 }
end {ExecuteVerb};

➤ Listing 12

April 1996 The Delphi Magazine 35

	Default Component Editor
	Custom Component Editors
	Menu Component Editors
	Menu Default Component Editors
	Next Time

